
PMM U.S.S.R. ,Vol.53,No.l,pp.108-X7,1989 
Printed in Great Britain 

OOZl-8928/89 $~O.OO+O.OO 

0 1990 Pergamon Press plc 

ON THE SUBSONIC STATIONARY NOTION OF STAMPS AND FLEXIBLE COVER-PATES 
ON THE BOUNDARY OF AN ELASTIC HALF-PLANE AND A COMPOSITE PLANE* 

E.L. NAKHMBIN and B.M. NULLBR 

A mixed dynamic problem for an elastic half-plane on different sections 
of whose boundary shear and normal stresses and displacements are given 
simultaneously in four fundamental combinations is considered. It is 
assumed that all the sections move at an identical constant subsonic 
velocity along the half-plane boundary and their number and mutual 
arrangement are arbitrary. An analogous problem on the interaction of 
two half-planes of different materials (a composite plane) is examined 
under the formulation of six kinds of contact conditions simultaneously 
in two modifications. The solutions are constructed in quadratures on 
the basis of new representations of the complex Galin potentials /l/. 
The first problem is reduced to a scalar combined Hilbert-Riemann boundary 
value problem /2/ for a plane with slots, and the second to unrelated 
Hilbert-Riemann and Hilbert problems for the same domain. Both problems 
of the theory of analytic functions are solved by a new method different 
from /2/. Theproblemofthe wedging of a composite plane by a finite stamp 
moving at a sub-Rayleigh velocity /3/, and the problem of the motion of a 
stamp and a flexible cover plate over a half-plane boundary at subsonic 
velocity are examined as examples, 

The exact solutions of stationary contact problems for a half-plane 
with two kinds of boundary conditions were first obtained by Galin /l/. 
The problem was formulated for a composite plane with three kinds of 
boundary conditions, whose solution is obtained in quadratures in the case 
of one slipping section /4/. However, as shown in /3, 5/, the method 
described in /4/ does not result in an exact solution for a large number 
of sections. 

1. The Hilbert-Riemann problem for a plane with slots. we consider a com- 
bination Hilbert-Riemann boundary value problem for a piecewise-analytic function @D(z) in 
the complex z= z+ iy plane with boundary lines LUM 121: 

Im ipf(z)@* (i)l = f*(z), pf (3) # 0, SE L = L' u L" (14 
@+ (2) = G (z)U'- (z) -+ g (r), I E N = M’ U MS, (W 

L n M = 0, L u M = (-co, co) 

in the special case which is important for applications when G(x) = G- const, ZEN, G (XI= 
1, x=Ma the function p*(z)= p(z) takes real values on A' and pure imaginary values on 
L2. Let L consist of a'half-open, a? open and a-a'-a" closed intervals <% ba), k = f, 
2 1. . .I R, M’ from the segments [s~,tklr k = 1,2, . . ..Q of the real axis a,< 4<. ..< bR, 
s,<t,<...<tq. Without loss of generality it can obviously be assumed that p (x) E 1 

on L’ and p (5) = i on L'?, We will assume that every boundary point oftheoutline L does 
not belong to L except in the case when it is a boundary point of Ml. Let the intervals 

<aa, b3 contain Nk inner nodes x = dk, that are simultaneously boundaries for Lx and L2 
at which the function P (3) undergoes a discontinuity 41 -C 4,r+r, the total number of inner 
nodes equals N on L and the functions f’ (4 and g(x) satisfy the Hijlder condition. 

we will seek the solution of problem (1.1) and (1.2) in the broadest class he 181 of 
piecewise-analytic functions tending to zero at infinity by using the canonical solution 

x (2) of the corresponding homogeneous problem by setting /2/ 

X(z) =Z (z) e”Jl(@ ijl (z - b,)+ ‘if (z - c,)-‘1 (1.3) 
1=-x j-1 
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ln(- G) 
Y=:T 

Y (2) = fi (2 - a$*(2 - b&p, Y(z)=zR+O(zR-I), z-+w 
k-1 

h*(t) = X?akf - w z* 0) 4- )j h w3 (t - cjl* + 
R 

Z aj w3 @ - b,)* f nmf (t) + l/z (1 - S) n, 
I-1 

t~&.,bR>nL‘, k=l,..., R; s==i,2 

Here n$, irk, f&f 0 are integers, cx are complex numbers, m*(t) are integer functions 
to be determined that can have jumps on the edges of the slots for 5 = 41 _t i0, mf (ak) = 01 
Z(Z) is the canonical solution of the homogeneous Riemann problem (1.2) in h,; 'II, (a) is the 
solution of the Dirichlet problem Re@(s)= h*(z), sEL bounded at all the nodes as well 
as at infinity because of additional conditions imposed on the function fi 0) 

(1.4) 

Unlike the Riemann problem /6/, it is impossibl.e to construct the canonical solution in 
the Hilbert-Riemann problem in the general case in the same class h, as the general solution. 

The asymptotic form of the function X(z) at nodes of the line L can be written in the 
form X(z) = 0 [(Z - #I, I--+& where 5 = hk for d=a%, c=vk for d = bk,, 5 = art* for 
d = dC2 S $0 and the following equalities hold 

a,==& + %-r/&+-r vk= Ah +ek --Ok + */Swk--c& 6.5) 
wk-=nk+ - n,- 

Ak=l~~~m+(bkf-m-(bk)lr Vi! =f @(do) -m*(dkl + 0) + 
m*(dtL -0o)l 

6 (t) = nei arg (p (t + 0) fp (t - O)P} 

Here 61, = -'/g (6, = 0) if at E M' (ak i?i? Ml) and Ek = -‘/.a (8~ = 0) if bk E M’ (bk s M’). 
Since o% are integers then BE z&d e& are a&O integers and the quantities e (& hk, vkr Ykt* 

are multiples of Va. 
Setting vki* se -l/a and taking into account that mf (sk) = 0, mf (dkr -+ 0) = rn* (dk,l+l - 0), 

for sequential calculations in 1 of the functions m*(t) we obtain a recursion formula 
for any k m* (drl + 0) = rn* (dkl - 0) + E (6 (dkl)} + 1/1k1/g where .E (t} is the integer part of 
t. Hence and from (1.5) it follows that 

A, = 'i,Nk, ak = Sk + 8k - hk - Yk + ‘f&k (3.6) 

Let rr be the index of the degree of growth of the function 

as &-+a, ra the number of nodes at which the function X(z) has no singularities, and let 
us introduce a new notation of the intervals <akT bk>. Let A,,' be half-open (t = I), open 
(t = 2) or closed (t = 3) intervals <a,,, b,> with an odd (s = 1) or even (s = 2) number 
of inner nodes equal to N,,', n varies between 1 an.d a,', and L* Is the union of al.1 
intervals L,,‘, Ld, L,,s. Then a unique triplet n, % t can be set in correspondence to each k, 
and the corresponding number ak can be denoted by C&c We set hx = vk = --'la for cak, bk> fZ 

L*, hk = -'i,, vk = 0 for (ah* bk> EL \ Li. Using (1.6) and the equalities 
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we obtain all the numbers a, and rg in the form 

(1.7) 

Further operations exactly duplicate the procedure for solving the Dirichlet-Riemann 
problem /7/. The quantities Br, up, II& = 2(& + ok-&.) are calculated sequentially by means 
of (1.5). The integers wk+ = nk'f n6- of given evenness and coinciding with wk- and the 
complex numbers CL. The affixes of points arranged on the curves SI, whose ends are the 
points ak, b,, k = 1, . . ., R - 1; WR+ = WE-, are found from the system of transcendental Eqs. 
(1.4). Knowing wkf the integers n$ can be found but they do not occur in the solution 
(1.3) separately. Rational methods for selecting @k and Sk are examined in /7/. 

To be specific let fiksz 1, the function X(z) has only simple poles at the points 
a=ck, and Sk is a semicircle in the half-plane Imz>O. Then by the construction of (1.3) 
the asymptotic form X(z) has the following form at infinity 

x (2) = 0 (2-T) r=Q+R+r,--l (1.8) 

The general solution of problem (1.1) and (1.2) in the class h, is expressed by the 
formulas /7/ 

@ (2) = x (2) [@I (2) + @s (z)I (1.9) 

s=r+r,-R--l 

f** (r) = f* (z) [X* (x)1-’ - Im C+ (z), x E L; 

y. (z) = Y (z) fi (z - b,*)-’ 

Here P,(z) and QI(z) are polynomials of degree r and s with real coefficients, b,*, 
n = 1, . . ., r, are the right ends of those intervals (an, b,) at which the function X (z) is 
bounded. By virtue of (1.91, (1.8),and (1.7) the total number of coefficients in both poly- 
nomials equals r i- s i- 1 or 2Q + 3R + N - a’ - 2a” - 2. Here 2R - 2 coefficients are 
removed when eliminating the poles of the function m(z) at the points z = Ck when solving 
the system of equations (&(a~)+ Q)B (CL) = 0, k = i,...,R - 1. Therefore, the number of 
arbitrary real constants in the solution obtained equals 2Q + R + N - a’ - 2a” and is 
always positive since 2Q> a' + 2cc', r> i,s> 0. An analogous calculation involving the 
orthogonality conditions of the free terms can be made for solutions in any class h, /6/. 

2. The Hilbert problem for a plane with slots. If there is no second condition 
in problem (1.1) and (1.21, its solution (1.3)-(1.9) is simplified: Z(Z)= 1, Q = 0, a' = a" = 
0 the number of arbitrary constants becomes equal to N+ R and the points ck determined 
by the system of transcendental Eqs.ll.4) agree with the nodes ok. Let us construct a still 
simpler solution in which conditions (1.4) do not occur. 

In the Hilbert problem (1.1) written in the form 

Im Ip,@+ (41 = f,* (4, s=l,21 p,=l, pa=& xELS (2.1) 

let the lines L’ and LB respectively, consist of 1' and la segments [ak', bR1l and [ak*, braI 
and let them have N common nodes as in Sect.1; obviously 1' + Is = N + R. The solution 

of the Dirichlet problem for a plane with slots Im X,*(z) = 0, ZE Ll having the form 

X,(z) = i [if (z - ak‘) (z - bk’)]_I’*, X,(z)- z 
-1 

8, Z-b30 

k=l 

(2.2) 
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for s=l can be taken as the canonical solution x(Z) of the homogeneous problem (2.1) for 
f.f (2) G 0 * Indeed, the function x (2) = x, (2) is pure imaginary on the OX axis beyond Lx; 
consequently, as condition (2.1) demands, Re X(z) = 0 on L'. Now by virtue of (2.1) the 
function F (2) = Q, (2) IX, (2)P can be found by solving the Dirichlet problem for a plane with 
slots 

h F* (z) = f,* (2) Ip,X,* (a+p, z E L’, s = 1,2 (2.3) 

The function O,(z) in this class ho should have a power-law singularity with exponent 
--'iz at all nodes ak', bk8 and should decrease as z-1 at infinity. Hence, and from (2.2) 
it follows that the solution of problem (2.3) must be sought in the class of functions growing 
as z'l, 7) = P- 1 as z-+00, bounded at the ends a,*, a$*, . . ., at of R of the slots [ak, b,] 
in which & of some points ah and bk coincide, respectively, with a,,' and b,’ and having an 
integrable infinity at the remaining 2R - 5 ends ak and bk. We write this solution down by 
using the function (2.2) for S= 1 and 2 and therefore eliminating all quantities 2 -ok* 

F(z)=&-s {;~~;~q~+~]. *-* 8 L' 
s f,-tt) dt f + (4 

x1+ (0 x1- (‘) t t-_l + p, (4 -i iQe (z) x, (4 1x1 W’ 

Taking account of the equalities 

@ (2) = x, (z)F(z), X, (t) = (-1)8+q+1X8+ (t), t e Lq, R = 

F+P-NN, E=21'-N 

we hence obtain the general solution of problem (2.1) 

We note that the number of arbitrary constants 1' f 1' or N+R and the form of this 
solution for fixed 1' and 1% is independent of the number of conmon nodes N of the lines L’ 
and La; for instance, merger of any slots from L' and La isnotreflectedin (2.4). 

If f.' (2) = f.- (X), s = 1, 2, the solution (2.4) of the Hilbert problem (2.1) separates 
into the sum of solutions of two separate Dirichlet problems (2.1) for s=1 and s = 2: 

ix, (4 [+- i xari;l,‘;‘td!_ z) + Qe (z)] 

3. The contact problem for an elastic half-plane. Let L#,,, = <ak,, h,.,>, k = 1, 
k .*.1 m, m = 1,2 be any open, half-open, or closed intervals, Lk8 = [ak8,bks],k = 1,2,. 

are segments of the Ox axis of an ~Ooy Cartesian system of coordinates moving ata cons&!it 
subsonic velocity c in the direction of the Ox axis relative to the elastic half-plane - 00 ( 
x(00, y<O and akn, < bk,,, < ak+l.m for all k and m. 

We write down the boundary conditions 

u'=u0(2), XELa U La; V‘=Vg(X), XELr IJ La; 

&,='c Lk,,, 
k-1 

(3.1) 

7XV = 7 (4, x E L, ,, L,; a‘, = (r (x), 5 G L, f, L‘; Lk ,-, 

L, = 0, k # Zi 

corresponding to sliding contact of the stamp on L,, to adhesion of the flexible inextensible 
cover-plane on La9 to total adhesion of the stamp and half-plane on L,,to the assignment of 
the stresses on LI ,the complements L, U L, IJ L, to the Ox axis. We will consider that the 
given functions satisfy the H&der condition, and any boundary point of L,, m = 1,2, does not 
belong to L, only in case it belongs to Ls. We set the rotation and compression equal to zero 
at infinity, we give the jumps Xh, m = I,2 on all Segments bkl9 bkll and [ON, &I in the 
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open intervals (UK,,,, btJ and the quantities YYr and &W respectively, in &s, bYs1 
for those k for which %I is not a boundary point of some interval (c&,.~, b,,,), m = 1,2 the 
quantities Xkst Yks. where Xk,,,, YE, are the principal shear and normal stress vectors on 
L E,,,, TEI = U (b&x) - u (u& %I = D (&e) - v (“k,)* The total number of these arbitrary force and 
kinematic parameters of the problem obviously equals k; -I- k, + 2k, -cd- 2a”, where a' is 
the number of half-open, and a" is the number of open intervals in & IJ &. 

We will seek the solution of the problem (3.1) in the Galin form /l, 8/ 

PU’ = --Re 1~ (4 + WPS (z2% CLU’ = Im IQ~‘P~ (4 + (pz (z2)l 
0, = 2Re fm (4 + q24”e (z2)L xx, = 2Im bm (4 + 

492 (z2)L 2, = x + m4 

QF = r/l - c=& 2q = 1 + q22, c;* = 2 (1 - Y) (1 - Zv)-1 c;*, 

c:, = pp-’ 

(3.2) 

where ir. is the shear modulus, v is Poisson's ratio, p is the material density, Cl, and 
cz* are the longitudinal and transverse wave propagation velocities, cp*(&s=l,2 are 
functions analytic in the half-plane Imz< 0, z = CC i_ iy, tending to zero in it as z--too, 
and l = ai&. 

We will introduce a representation of these functions in terms of one function @(z)that 
is piecewise-analytic in the z plane with boundary line y = 0. Requiring that the function 

@ (2) satisfy the Hilbert condition in L, u J52 and the Riemann condition in L, 1J LI as in 
/7/, we obtain 

cps (z) = q;"' I(- *)"I R+9 (2) + R-@(z)J, R* = 1/G i_ q, (3.3) 
s=1,2 

Substituting (3.2) and 13.3) into (3.1), we arrive at the combined Hilbert-Riemann problem 
(1.1) and (1.2) in which 

LS =i L,, s = 1, 2 

w = Ls, MB = L,, G = 4+/G-, Grt: = R-l (Q+)-“, 

Q*=f+llp,q, 

f* (cc) = IV-’ I&‘/, (Gr)-l u (5) - I” u,, (~$1, .z c La 

g (5) - -p (R-Q+)-” Iql”w, (4 -I- iq2’ho (41, 5 EM1 
g (x) = 1/,R,-1 lqI% (x) - iq2% (s)l, 5 E M2 

R, = R’R- = qlq2 - qs 

Q* = Q+Q- = 1 - ma 

R, and Q* are Rayleigh functions for the free and clamped half-plane and the number of 
arbitrary constants equals the number of parameters of the contact problem since k, + k, = 
N + R, ks = Qs 

It is convenient to use the solution in the form (3.3) in the case when a section of the 
boundary &contains one or two semi-infinite intervals. If the section L, is extended to 
infinity then by using the representation 

qs (z) = q;'l' I(--1)"Q'O (a) + Q-'i @)I, s = 1, 2 

it is convenient to reduce thgproblem (3.1) to the boundary value problem (1.1) and (1.2) by 
replacing L, by Lr,L, by -& and the functions f*(s),G(X), and g(s) by &Grf* (z), G-'G(Z), 
and G-g (2). 

It is possible to pass to the limit in (3.2) and (3.3) as c-+0 to solve the static 
problem. However, in this case it is simpler to construct the solution on the basis of 
Muskhelishvili potentialsby following /7/. 

4. The motion of a flexible cover-plane and stamp on a half-plane. On the 
boundary iv= 0 of an elastic half-plane Y<O let a rigid stamp zes L, = la,, b,] and a flexible 
inextensible coverplate 2 E L, = fun, ba]. a, < b, < ap < b, move together with a IOY coordinate 
system at a constant subsonic velocity c. A normal compressive force P is applied to the 
stamp, there is no contact friction, and a distributed normal load au= o(r) and a longitudinal 

force T are applied to the cover-plate attached to the half-plane (a caterpillar track). 
The boundary conditions of this problem 

u' = %, = 0, z E L,: U' = 0, OY = 0 (z), 5 es L,; Tsr = CJY = 0, (4.i) 
z E L, 
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are identical with conditions (3.1) where there is no section L,. Following (3.2)-(3.5) the 

Hilbert problem for a plane with the slots L I and L, can be written as follows: 

Im uJ* (z) = 0; z E L,; RI? CD* (2) = -& [G*lvpo (=), 3 E L, (4.2) 

According to (2.2) and (2.4), its solution has the form 

CD (2) = @o (2) + i&Y,_’ (2) + c,y*-' (2) 

Y, (2) = T/(z - a,) (z - b,), s = 1, 2 

(4.3) 

(4.4) 

Determining the arbitrary constants in terms of the given forces P and T, we obtain 

c,= (y--P)lG TJnl 1 

4nH 9 Cp=x, Y=z o,,dz 
s 
h 

If D (f) = 00 = const, the solution is expressed in terms of elementary functions. Evaluating 
the tabulated integrals, we obtain from (4.4) 

Yl(b,)-Y~1(~~)+(22--(11- k) x 
- _ 

In I/b*--al -tfbo--1 
lG=z-t~~ I +2v--InX 

C I/(aa--bl)(z--al)+J(ao-aal)(r-bbl) I/s]_ 
f/(br - W (2 - 4 + I/h - al) (z - h) 

J-C (qtcle - d 
WI 

i _ 2~ - QO - bo 
2yn (4 1 

If oO=O then Q,(e)=_O,Y=O and by virtue of (2.5) the solution will separate into 
the sum of solutions of two Dirichlet problems. This is in agreement with the fact that 
Y (2, 0) = H (0) and v(z.0) = H(O), respectively, in the solutions of the Flamant and Cerruti 
problems for forces applied at the point z= 0 (in both statics and stationary dynamics) 
where H(z) is the Heaviside function. The contact stresses under the stamp and cover-plate 
in this case also do not, naturally, experience any interactive influence 

a, = - n-‘P (z - a,)-“’ (b, - z)-I”. z E L, 

7 xv = n-‘T (z - a,)-“* (bI - z)-I’*, z E L, 

5. The motion of slots in a composite elastic plane. Let Lkm =<arm, bkm>, k= 
1, 2, . . ., k,,, m = 1, . . ., 5 be intervals of the Ox axis of a Cartesian system TOY moving at 

a Sub-Rayleigh constant velocity c relative to a composite elastic plane, L, = UzfiL’km, L, 
is the complement L,U, . . ..UL. to the 4x axis. The line separating the elastic materials 
of the plane is superposed on the Ox axis, and magnitudes referred to the half-planes y>O 
and y<O are denoted by the subscripts j = 1 and j = 2. Let the half-planes be com- 
pletely adherent in the closed intervals L, = [ak,, bk.1; there are slots on the other sections 
between them, where the slots are open on L, and wedging stamps are imbedded in them, there 
is no friction; the slot edges in L, adhere to the flexible inextensible cover-planes; 
sliding conditions are posed on L&t "anti-sliding" contact of the edges on L,; and stresses 
are applied to the slot edges on L,. We will consider that the boundary point of any interva 
L km, m = 2, . . ., 5 does not belong to Lkm only when it belongs to L,. The total number of 
half-open intervals in L,, . . ..L. is denoted by a' and the open intervals by a". We write 
down the boundary conditions of the problem 

[a, (s)l = on (z), [Tzt/ (x)1 = P (x), lu' (r)l = U0 (x), (5.1) 
Iv' (x)1 = v" (x), x E L, 

G,l = T,O (4. q (4 = u,” (21, 5 E L, 

GyJ (5) = 0,” (d. u,’ (5) = u,” (x), t E L, 

$J = zl” (& b’ (x)1 = v” (I). [(Jy (%)I = 8 (X), 2 E L‘ 

‘JyJ (x) = ‘J; (x), b (x)1 = u” (x), h,u (x)1 = To (Z), 5 E 

L5 

U‘yJ (x) = OJ” (& TX,, (5) = zJ” (x). 32 E L,; if (x)1 = 

fl (4 - f* (4 
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Taking account of the kinematic contact conditions, we additionally give the principal 
vector X-, Y” of the stress field at infinity for y> 0; we give the displacement jumps 

IU (anfl = %I0 and Iv (a&l = vr10 at points an-1 that are not boundary point for any intervals 
(all,,,, b!,), IX = 2, . . .: 5; we give the normal force yk applied to the stamp on each segment 

[%x, brzl and the jump [u(ukz)l = Q~, two longitudinal forces XXI applied to the coverplates 

are on Ia&,, b,,f ; the jump IV (alia)l = Vkaa is on [aKS, b,,l, and the jump lu (aks)l = Ut5.c) is 
on [aIt,, bk,l. The total number of these additional quantities equals 2 (4 -t k, -I- 14 i_ k, + 
kS - a’ - 2a”. 

We will seek the solution in each half-plane in the form (3.2) 

where Cjl and ejz are the longitudinal and transverse wave propagation velocities in the 

j-th elastic medium. 

We select the functions (Pjk tz) by again being guided by the Bilbert and Riemann con- 

ditions (!A, is the shear modulus) 

(rjh. (2) zsi (- l)s(*+j) [QjiF, (Z) - (- 1)” Q!:i”, (Z)] (5.3) 

Rj = qilqjz - qja 
p~k ~ pjk = X’-‘Qjh (1 - ~j) Ri’, “A = FLIP2 -l* Pk = hk + Pzk 

Substituting (5.2) into (5.1), we obtain two unrelated combined boundary value problems 

for the piecewise-analytic functions 15; (4 and F, (a). 

For the first function this is the Hilbert-Riemann problem (1.1) and (1.2) for 

Its solution (1.91, (1.31 and (1.4) has 2k, -t- It, -i- k, + k‘ + k, - a' 
constants. 

- 2a" arbitrary 

(5.4) 

We set F,(z)= Qs(z)i- @* (z) where O*(Z) is the solution of the problem of a jump 

Q*'*' (4 -Q,-(x) = gz(z), sE MO, having the form 
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Then we obtain the Hilbert problem (2.1) for the function 4, (z) = @z (z) in which L' = L,, 

Lz = L,, f8* (z) = f$ (z) - Im Ip, (z) @, (~$1, x E L", s =I, 2. Its solution (2.4) contains .kz i- kz 

arbitrary constants. Therefore, the total number of arbitrary constants 2 (k, -l-k, + k,)+ k,+ 

k, - a' - 2a" equals the number of additional parameters of the problem. 

The solution obtained can be used to examine another problem. We introduce the parameters 

1-1,* = '/&PJ-l~ 9j* = 41-i* 41k* = 4jtcQje1. Then the right sides of the equalities (5.2) retain their 

form, on the left side the function Uj' is replaced by _(JYf and vi' by %I and 

conversely 
- PLi*"vj= - Re ITJl Czjl) + 4la*‘Pja (zjz)l* 

It hence follows that by an appropriate replacement of all six boundary conditions 

I--u' (XX = no (x1, Iv' (Z)] = v" (z), [-cJv (a?)] = IJO (I), 

[%I/ (s)] = r0 (5), x E L, 

uJ” (x) = V,” (T), 
Txyj (x) = Tp (2), X E L,; 

- uj’ (%) = uj” (5)v - Uvj (2) = Uj’ (X), zX E L, 

(5.6) 

etc. and by replacing the quantities pjl qj? (Ijkt ujOt L’j’, ul”* %I0 by Pj*v %*T qjk ** Uj’* Zj’f Uj’, Vj’ 

in (5.3) and (5.4), these formulas and the representations (5.5) will determine the solution 

of problem (5.6) for a composite plane with new kinds of boundary conditions. 

If the plane is homogeneous, then the conditions of total adhesion of the slot edges to 

the stamps on arbitrary sections .& can be set together with (5.1). The solution of this 

problem will be the sum of solutions of the two problems (3.1) obtained after partitioning of 

the conditions ~1' (z) = Uj" (I), Vj’ (2) = vjO (.z), x E L, and (5.1) into symmetric and skew-symmetric. 

6. FJedging of a composite plane. The solution of the Hilbert-Riemann problem (and 

corresponding problems of elasticity theory) for the case of domains L and Ml containing semi- 

infinite intervals differs slightly from the solution of (1.9) and (1.3). It is merely 

necessary to omit those from the quantities (z- a,), (2 - ba), (p - sl). (z - ta) in which 01 = - m, b, = 00 

or sl= --oo or a,=-w,tQ=X‘ in the latter and to use the method from Sect.1 by classify- 

ing the infinitely remote point as a common point of two semi-infinite intervals, Without 

studying these modifications separately, we will confine ourselves to examining a problem 

whose approximate solution is the content of /3/. 

Let us composite plane be weakened by a semi-infinite slit -= <r<Z, I= O,l>U, which 

propagates under the action of a finite stamp - b<z<--a< 0 of constant thickness 2Ji, and 

a semi-infinite stamp - z‘ <Z < - d of thickness 2H, imbedded therein and moving at a sub- 

Rayleigh velocity c; there is no contact friction and a transverse force Y is applied to the 

first stamp. Since the half-plane materials are different, the crack edges join at a certain 

section IO, I). Find the solution in which the juncture at the points += 0 and 2=--d 

is smooth, i.e., the stresses at these points are bounded. 

The boundary conditions of the problem have the form (5.1) where o"(z)= r"(z)- u"(Z) = $(Z)s 

0, + E L, = ]I, m), xl0 (2) = vj' (3) E 0, z E L* = (- ~0, -4 U L--b, -4, r~“(~)=~n(+)=Oo(I)~O.~EL,=[O,I), 
0, D (Z)‘Tj 0 (z)fO,zEzLs= (-a, 0) U (-4--b), and there are no sections L, and L,. 

Taking the solution in the form of (5.2) and (5.3), we obtain a homogeneous combined 

problem PI+ (z) = G (2) F,- (1). ZEMI= .&,bnF,+(~)= O,ZELI= L, U L, and a Dirichlet problem 

Im F,* (z) = 0, z rs I-b, --a]. 

We write down the canonical solution of the first problem 

x (L) = Z (i) ,iq(Z) ci + d)-0' (z + n)-a' (Z - I)+ (z - cl)-l (2 - c&l 

2 (2) = (z - I)-%+s, --n < arg (z f d)( II, 0 < arg (z - 1) d 23. 
t = --n, -b, 1, cl, e, 

(6.1) 

Converting (1.3), as in /9/, we represent the function 9 (2) in the form 

Y (8) 3 I 
93 (4 5 7 cs 1/2nw: + arg (t - es)+ erg (I - 4 

Yf (1) (t - 2) 
dt 

k=l 1 
Lk 

(6.3) 
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y(z)=~tZ+d)(Z+b)(z+a)z(z --I) 

h’ = (-- 00, _t 4, LB’ = j-b, +z], &,Z = [I), 21 

We consider the behaviour of the function X(z) at the nodes. According to a general 
rule El = (I, 6, = --'in, ep = gp =: 0, es = --'lp, S, = 0. Since L*=I---b,--al, then 

v* = YII = 0, 11 = b, = h, = v* = _1J8 (6.4) 
The function X(z) has root singularities for Z= --d,--b,--n,o and is bounded for z = I. 

In view of the absence of points of discontinuity dlrr we obtain m*(~)ssO,N~=b~=O and by 
virtue of (1.6) and (6.4) this means a, = a* = 0, c+ = 1. 

Since arg Z+ (2) = arg Z-(z) = --'/,n + y In (Z-z) for s<E then according to (1.5) mk=f+k or 
o1 = Id2 = 0, 03 = 1. Now the numbers Wk-=2(8r+ ok- Q) can be found according to the formula 
w,-= --1,(~.~-= i,w,-= l.The desired canonical solution of the problem has the form 

i erP r@J (a)+ %(~)I 
'(')=- (z-el)(z-cy)J~(a+a)(t~b)(s j-d) (6.5) 

where the functions m (a), 'PO W. Y (1) are expressed by (6.3). 
The integers wk+ and the complex numbers Cl? Ct. are determined, according to (1.4) and 

(6.3), by the system of equations (n= 0,1) 

3 zs [~/*llco: + arg (f - Cl) -I- arg (f - CP)] t* fit 

k=i 1 
my+(r) 

Lk 
‘ 

The general solution of the combined Dirichlet-Riemann boundary value problem has the 
form (1.9) and (6.5) , where 
(2 + b) (2 + d31'", Q. (2) = C,z + Co. 

Q, (z) = F, (z), g (1) = fn* (t)~o, CD, (2)~ o, r = 4, I = :, Y, (z) =(z - ~)-'/a [Z ($ + a) 
Satisfying the condition of boundedness of the function F1 (2) = 

X(z)%(z) at once for z= -d,O and consequently setting Pvl (4 = 2 0 + d) (D,z + De), we write 
the solution in the form 

F, (2) = (2 - c&-l (2 - c,)_'T (a) exp Iicp (2) + icp, ($1 

where C** c*, D,, D, are real constants. 
We have two complex equations 'F(Q) =O, k= i, 2 to eliminate the poles of the function 

F, (2) at the points t=L?*. Finally, solving the homogeneous Dirichlet problem for the 
function F,(r) we obtain /6/ 

Fp (z) = fC (z + a)-". (z + b)-‘A (6.6) 

The coordinates of the boundary points of the contact sections are determined from the 
relationships 

where according to (5.2), (5.3), and (6.6), we have 

1. 

2. 

3. 

4. 

P,I/z [v' (z)I = G+ Im F1+ (z) - G- Im I?,- (2) 

The real constant C in (6.6) is found from the given value of the force Y. 
Integrating the jump of the normal stresses in f-b, ---al, we obtain C = PIIPP~ (Zippy. 
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CONTACT PROBLEMS OF THE MECHANICS OF BODIES WITH ACCRETION* 

N.KH. ARUTYUNYAN and A.V. MANZHIROV 

Contact problems of the mechanics of bodies with accretion are studied. 
A general formulation of the mixed problem is given for a viscoelastic 
ageing body during its continuous piecewise accretion. Complete systems 
of equations of the mixed problem are given in time intervals from the 
onset of loading to the onset of accretion, from the onset of accretion 
to the end of accretion, and beyond it. 

The characteristic feature of the basic relations in the case of a 
body with continuous accretion is the use not of the usual equations of 
compatibility of the deformations and the Cauchy relations, but of their 
analogues in the rates of change of the corresponding quantities /l-3/. 
Moreover, the given previous histories of the deformation tensor of the 
accruing elements form, at the instant of attachment, specific initial 
and boundary conditions /2/ on the accruing surface. In particular, the 
total stress tensor associated with external loads and characterizing the 
tightness of attachment of the accruing elements is determined at the 
accruing surface /2, 3/. The instant of attachment of the new elements 
to the main body represents an important characteristic of the process. 
The set of instants of attachment completely determines the configuration 
of the accruing body at any instant of time. Equations of state of the 
theory of creep of the inhomogeneously ageing bodies are used /4, 5/. The 
equations reflect the fundamental specific features of the accretion process 
where the times of preparation and onset of loading play an important part. 

A method of solving the mixed and initial-boundary value problems is 
given. Contact problems for a wedge under various methods of accretion 
are considered. Integral equations are derived and their solutions 
constructed. Numerical solutions of the contact problems for a wedge 
with accretion are given for the case when the influx of matter from out- 
side results in increasing the wedge angle, and for an accruing quarter- 
plane. Qualitative and quantitative effects are discussed, especially 
the influence of the method and rate of accretion on the contact character- 
istics. 

1. Formulation and solution of the mixed problem for an ageing, viscoelastic 
body with accretion. Let a homogeneous, viscoelastic ageing body manufactured at the 
instant t = 0. occupy the region && with surface So, and be stress-free up to the instant 
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