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ON THE SUBSONIC STATIONARY MOTION OF STAMPS AND FLEXIBLE COVER-PLATES
ON THE BOUNDARY OF AN ELASTIC HALF-PLANE AND A COMPOSITE PLANE"

E.L. NAKHMEIN and B.M. NULLER

A mixed dynamic problem for an elastic half-plane on different sections
of whose boundary shear and normal stresses and displacements are given
simultaneocusly in four fundamental combinations is considered. It is
assumed that all the sections move at an identical constant subsonic
velocity along the half-plane boundary and their number and mutual
aryangement are arbitrary. An analogous problem on the interaction of
two half-planes of different materials (a composite plane) is examined
under the formulation of six kinds of contact conditions simultaneously
in two modifications., The sclutions are constructed in quadratures on
the basis of new representations of the complex Galin potentials /1/.
The first problem is reduced to a scalar combined Hilbert-Riemann boundary
value problem /2/ for a plane with slots, and the second to unrelated
Hilbert-Riemann and Hilbert problems for the same domain. Both problems
of the theory of analytic functions are solved by a new method different
from /2/. The problem of the wedging of a composite plane by a finite stamp
moving at a sub~Rayleigh velocity /3/, and the problem of the motion of a
stamp and a flexible cover plate over a half-plane boundary at subsonic
velocity are examined as examples,

The exact solutions of stationary contact problems for a half-plane
with two kinds of boundary conditions were first obtained by Galin /1/.
The problem was formulated for a composite plane with three kinds of
boundary conditions, whose solution is obtained in gquadratures in the case
of one slipping section /4/. However, as shown in /3, 5/, the method
described in /4/ does not result in an exact solution for a large number
of sections.

1. The Hilbert-Riemann problem for a plane with slots. We consider a com-
bination Hilbert-Riemann boundary value problem for a piecewise-analytic function @ (2} in
the complex 2= z 4 iy plane with boundary lines LUM /2/:

Im [p* (2)Q* (@)l = f* (z), pr{(2)==0, 2L =L"|}L? “.n
@) =C@)P () +gx), zEM=M{U M, 1.2)
LOAM=0, LUM= (—o, )

in the special case which is important for applications when G (z)== G = const, x € M*, G (z)} =
i, 2E&M? the function p* {2} = p(2) takes real values on L' and pure imaginary values on
L%, et L consist of q’half-open, &” open and R — &' — &" closed intervals <£&w b, k=1,
2,...,R, M* from the segments lIs;, %), k=1,2,...,0Q of the real axis &<b<...<<bn
s<hH<...<lg Without loss of generality it can obviously be assumed that p(z)=1
on L' and p@ =i on L% We will assume that every boundary point of the outline L does
not belong to L except in the case when it is a boundary point of M?', Let the intervals
{ay, by contain Ny, inner nodes = = dy that are simultaneously boundaries for I} and L?
at which the function p (z) undergces a discontinuity &y << g4y, the total number of inner
nodes equals N on L and the functions f%(2) and g{(z) satisfy the HSlder condition.
We will seek the solution of problem (1.1) and (1.2) in the broadest class hy /6/ of
piecewise-analytic functions tending to zero at infinity by using the cancnical solution
X (2) of the corresponding homogeneous problem by setting /2/
R R~1
X@=2@ e [[ a—b)™ [[ (s —cp™ (1.3)
J=

Jrm
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Q
Z(z)== He- sg)7 A (2 )i
==
V(D) =5 S {—-—-——~—-——Y =) [h;?{[)*" akQ) WY (t)} i
L
_ (=6
V=

R
Y (2) = H (z— ay)'s(z — by)s, Y (2)==2R 4 O(zB1), z->o00
k=1
R—1

ht (t) = an,E — arg ZE (t) 4 52 Byarg (f — et +
—y

R
3 oyarg (¢ — byt - amt () + 3, (1 — 5)m,
=1

tE<ax,bk>ﬂL., k=1,..«,R; 8=1,2

Here mt, ag, By 70 are integers, & are complex numbers, m*(f) are integer functions
to be determined that can have jumps on the edges of the slots for x = dyy F i0, mt (a;) = Oy
Z (z) is the canonical solution of the homogeneous Riemann problem (1.2) in kg ¢ (z) is the
solution of the Dirichlet problem Rey* (z) = ht(z), e L bounded at all the nodes as well
as at infinity because of additional conditions imposed on the function h* (3}

R (8) - B (1) 4. .
IS‘——*?Tt)——tjldt:O, ]=1,...,R-—-1 (14)

Unlike the Riemann problem /6/, it is impossible to construct the canonical solution in
the Hilbert-Riemann problem in the general case in the same class Bh,, as the general solution.
The asymptotic form of the function X (2) at nodes of the line L can be written in the
form X{(2) =0z —dRl, 2—>d, where L =% for d=ay [=v; for d=1b, [ =¥ for
d =dy+ {0 and the following equalities hold

A== Oy 4 0 — YT, V== Ay 4 &x — 0 + 1w g, *.5)
Wy == nyt — ny”

A=, [m* (b} — m” (by)l, V& == [8(der) — mE (dy + 0) +

mE {dy; — 0)]
k=1
1 Z

@y == 0 — 2n Arg _Z:g; y TELOn by Op= Zal(k> 1),
=

8, =0 ’

Gty =atarg{p (t +01Ip(t — O}

Here Op == —Y3(8; =0) if are= M (0= M) and & = —Y, (g = 0) if b, = M (by & MY).

Since Ox are integers then 8, and wx are alsc integers and the quantities 8 (f), Ay, Vg, Pt
are multiples of Y,

Setting 7t = —Y; and taking into account that m¥E {ax) = 0, m* (dy; + 0) = m* (d, 141 — 0),
for sequential calculations in I of the functions m% (t) we obtain a recursion formula
for any k m* (dyg + 0) = m* (dy; — 0) + E {8 (dy)} + Y3+ Y, where E {f} is the integer part of
t. Hence and from {1.5) it follows that

Ak = llsz, Oy == B 4 6,, _ Xk - Vi + ‘lsz (1.6)
Let r; be the index of the degree of growth of the function

R
Iz — byy™

=),

as %-»00, Ty the number of nodes at which the function X () has no singularities, and let
us introduce a new notation of the intervals <& by, ILet L,' be half-open (= 1), open
(t=12) or closed (t==3) intervals (a, b,> with an odd (s=1) or even (s==2) number

of inner nodes equal to N, n varies between 1 and a,f, and L* is the union of all
intervals L,,!, L} L,,°. Then a unique triplet =n,s t can be set in correspondence to each X,
and the corresponding number o, can be denoted by a,f We set Ay = v = =1, for <&, b =

L*, by = —Yy v =0 for {ax, D =L\ L*. Using (1.6) and the equalities
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2 3 a,!

2 3 'S
¢t t
a, == _ 1 —_— —”
s'=91Z tgi ¢ R' .;gl tgi n‘?:l Nm N' al + azl—a,’ al.2 + a,’_oc
we obtain all the numbers @ and 7y in the form

=", (Vis+ 1)@=, (Vi —1), af=1,(V + 1) (1.7)
Gna=1/Nns  Ghy="/;N0g aly=1/,N3 1 1,
re=o,®+ & + a,!

R 2

3 %
r1=k§1ak=2 Z Ea:u=l/2N+R_a”_a21__

8=1 =] n==1

Yoo + a® -+ )

Further operations exactly duplicate the procedure for solving the Dirichlet-Riemann
problem /7/. The quantities Ok, g, wy = 2 (0 + o — A,k) are calculated sequentially by means
of (1.5). The integers wy' = m* + n,~ of given evenness and coinciding with w,~ and the
complex numbers ¢;. The affixes of points arranged on the curves Sy whose ends are the
points ay, be, k =1,..., R — 1  wgt = wg", are found from the system of transcendental Egs.
(1.4). Knowing wyt the integers mt can be foynd but they do not occur in the solution
(1.3) separately. Rational methods for selecting Pr and S, are examined in /7/.

To be specific let fy=1, the function X () has only simple poles at the points
z=2¢, and S8y is a semicircle in the half-plane Imz>>0. Then by the construction of (1.3)
the asymptotic form X (z) has the following form at infinity

X@®=0@G", r=Q+R+r—1 1.8)

t

The general solution of problem (1.1) and (1.2) in the class h, is expressed by the
formulas /7/
@ (2) = X (2) (@ (2) + D, (2)] (1.9)

(Dl (Z) =

1 g(t)at __Yo(s) (Rt +Fm()
27 §4X+(t) t—z)°? D, (2)= ;n S ;’u*'(t) (tz—z) dt +
L

2\ U= 00+ P () 410, Yo (2)

L
s=r+r,—R—1
@ =1t @ Xt @1~ In @y (), & L;

Yo@)=Y (2) I z — 6%

n=1

Here P,(2) and @Q,(3) are polynomials of degree r and s with real coefficients, b,*,
n=1,...,r, are the right ends of those intervals <{a,, b,> at which the function X (z) is
bounded. By virtue of (1.9), (1.8), and (1.7) the total number of coefficients in both poly-
nomials equals r+s+1 or 20+ 3R+ N —a — 22" — 2, Here 2R — 2 coefficients are
removed when eliminating the poles of the function @ (z) at the points z = ¢¢ when solving
the system of equations @, (cx) +®P;(e) =0, k=1,...,R—1. Therefore, the number of
arbitrary real constants in the solution obtained equals 2Q + R+ N —a' —2a” and is
always positive since 20> a' + 2a",r>1,s> 0. An analogous calculation involving the
orthogonality conditions of the free terms can be made for solutions in any class h, /6/.

2. The Hilbert problem for a plane with slots. If there is no second condition
in problem (1.1) and (1.2), its solution (1.3)-(1.9) is simplified: Z(g) =1, Q@ =0, a" =a" =
0 the number of arbitrary constants becomes equal to N + R and the points ¢, determined
by the system of transcendental Egs.(l1.4) agree with the nodes ax. Let us construct a still
simpler sclution in which conditions (l1.4) do not occur.

In the Hilbert problem (l.l) written in the form

Im [p, @% (2)] = f£ (z), s= 1,2y pp=1, po=1i, z=L° 2.1)
let the lines L! and L? respectively, consist of ! and I* segments [ay, b'l and lay?, bl
and let them have N common nodes as in Sect,l; obviously B4 8=N-+R. The solution

of the Dirichlet problem for a plane with slots Im X,* () = 0, x = L' having the form

l!
X,(2)=i kal;[l E—a)E—b)] " X, @)~z z-o0 22
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for §=1 can be taken as the canonical solution X (z) of the homogeneous problem (2.1) for
fi£ (#) =0 . Indeed, the function X (2) = X,(z) is pure imaginary on the Oz axis beyond L*;
consequently, as condition (2.1) demands, ReX (=0 on L% Now by virtue of (2.1) the

function F (z) = @ (2) [X,; (z)]"* can be found by solving the Dirichlet problem for a plane with

stors ImF%(z)=f,% (@) [pXE @I z& L%, s=1,2 (2.3)

The function @ (z) in this class hy should have a power-law singularity with exponent
—1, at all nodes & b and should decrease as 2! at infinity. Hence, and from (2.2)
it follows that the solution of problem (2.3) must be sought in the class of functions growing
as A, n=010—-1 as z— 00, bounded at the ends a,*, a,*,...,a ©of R of the slots [ay, bl
in which & of some points ay and b; coincide, respectively, with a,! and b,! and having an
integrable infinity at the remaining 2R — % ends ax and bx. We write this solution down by
using the function (2.2) for s$=1 and 2 and therefore eliminating all quantities 2z — a;*

2
. 1 X () Xty 1.0 1, (8
F(z)= S—f Zap, S { X (@ X () x:+ ® [ X0 +xF ® ] +
s==] e

e 1o . .
oy~ et T Pae) + 100 () K (3) (X, ()]

6=R+n—t

Taking account of the equalities

Q2 =X,@)F(z), X7 ()= (—1p"X> (), t=L% R=
BDLP_N, E=20_N

we hence obtain the general solution of problem (2.1)

3
0@=Y z 3§ oyttt O+ (— 172 + @4

/ t—z
§=1 g=1 ¢

Po(2) X1 (2) + Q0 (2) Xa(a), m=0—1, 0=11—1

We note that the number of arbitrary constants ' +~I1* or N 4+ R and the form of this
solution for fixed I and I is independent of the number of common nodes N of the lines It
and L3 for instance, merger of any slots from L' and L® isnotreflectedin (2.4).

If f*(z) =/ (), s=1,2, the solution (2.4) of the Hilbert problem (2.1) separates
into the sum of solutions of two separate Dirichlet problems (2.1) for s=1 and s§s=2:

@) =% [+ | TS + Paa)] + (2.5)
Ll
; 1 £t () de
%@ [+ | piptre - @)

3. The contact problem for an elastic half-plane. ©Let Ly, = <am, bim>» k=1,
<vkmy, m=1,2 be any open, half-open, or closed intervals, Ly; = [ag, byl b =1,2,... k
are segments of the Oz axis of an 20y Cartesian system of coordinates moving at a constant
subsonic velocity ¢ in the direction of the Or axis relative to the elastic half-plane — oo <
<00, y<<0 and aym < bgm < @k41,m for all k and m.

We write down the boundary conditions

uW=uy(z), 2L, |JL; V=0y(z), 2L, J Ly; 3.1)
¥

Lm = ‘L’Jn Lym
k=1

Txv='r(z)v z= LU L 0'”=0'(z), IEL,UL;; Lkn
L, =0, k%1

corresponding to sliding contact of the stamp on L,, to adhesion of the flexible inextensible
cover-plane on L;, to total adhesion of the stamp and half-plane on Lj, to the assignment of
the stresses on I4, the complements L, J Ly |J Ly to the Oz axis. We will consider that the

given functions satisfy the HOlder condition, and any boundary point of Lpm,m = 1,2, does not
belong to L, only in case it belongs to L,. We set the rotation and compression equal to zero
at infinity, we give the jumps 7xm, m = 1,2 on all segments [ayy, byl and lay, byl  in the
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open intervals (m, bxm) and the quantities Yx  and Xjs, respectively, in lagg, bygl
for those k for which @y 1s not a boundary point of some interval (@a, m, bopy), m = 1,2 the
quantities Xxss» Yxs, where  Xy,, Yy, are the principal shear and normal stress vectors on
Lyms Yex = 4 (byy) — 1 (@xy)y Ywz = ¥ {bxs) — ¥ (@xe). The total number of these arbitrary force and
kinematic parameters of the problem obviously equals & -4k + 2% — o’ — 22", where o' is
the number of half-open, and &” is the number of open intervals in Iy UJ L.

We will seek the solution of the problem (3.1) in the Galin form /1, 8/

pu’ = —Re [ (z)) + ¢,0; (z)], W' = Im [0, (2,) + @, (2)] (3.2)
o, = 2Re lgg, (z;) + @9 (), Ty = 2Im gy, (2)) +
9%, (2, 2, = = + igy

g, == Vi -_— cﬂcs—.z, 2qz 1 -+ g,2, Ci'g*—__—z (1 — ) (j —_ 2\;)”1 c§*,
cp==ppt

where p is the shear modulus, v is Poilsson's ratic, p is the material density, ¢, and
c¢ are the longitudinal and transverse wave propagation velocities, @, (2}, s=1,2 are
funct;ions analytic in the half-plane Imz< 0,z = z -+ iy, tending to zero in it as Z - o0,
and = 8/0x.

We will introduce a representation of these functions in terms of one function ® (z) that
is piecewise-analytic in the z plane with boundary line ¥ = 0. Requiring that the functicn
@ (z) satisfy the Hilbert condition in Iy |J L, and the Riemann condition in L, ) Iy as in
/7/, we obtain

P ()= "U— VMR Q@)+ RD ()], RE=V7g,+q, (3.3)
s==1,2

Substituting (3.2) and (3.3) into ({3.1), we arrive at the combined Hilbert-Riemann problem
(1.1) and (1.2) in which

=1L, s=1,2
ML == La‘ M = Lh = —G+/G~v G = R+ (Qi)-lv

0t =1+Vae

2 (@) = Wit [FL6F) 1 () —pv, ()], e =LY, W, =
ZQS‘/' (1 - q)

() =W LY (6F) o (@) — puy ()], z= L2

g(2) = —p (RQ)? lg 'y (2) + igg'/owy (1)), z = M?

g (x) = YoR, lgho (2) — ig/ (2)), z = M°

Ry, = R'R™ = q,g, — ¢*

G =00 =1 — g1,

f, and Q4 are Rayleigh functions for the free and clamped half-plane and the number of
arbitrary constants equals the number of parameters of the contact problem since ky + by =
N+ R k=@

It is convenient to use the solution in the form (3.3) in the case when a section of the
boundary L, contains one or two semi-infinite intervals. If the section L; is extended to
infinity then by using the representation

@, (2) = P (—1)Q*D (2) + ¢ D ()], s=1,2 (3.9
it is convenient to reduce the problem (3.1) to the boundary value problem (1.1) and (1.2) by
replacing Ly by LiL, by L; and the functions f(z),G(z), and g (@) by £GFf* (), GG (),
and Gg{2).

It is possible to pass to the limit in (3.2) and (3.3) as c¢-»0 to solve the static
problem. However, in this case it is simpler to construct the solution on the basis of
Muskhelighvili potentials by followinyg /7/.

4. The motion of a flexible cover-plane and stamp on a half-plane. On the
boundary ¥ =0 of an elastic half-plane y<{0 let a rigid stamp ze&L;=lqe;, 4] and a flexible
inextensible coverplate 2z & Ly = la,, by), o, < by < ay < by, move together with a 20y coordinate
system at a constant subsonic velocity ¢. A normal compressive force P is applied to the
stamp, there is no contact friction, and a distributed normal lcad ¢y=o(r) and a longitudinal
force T are applied to the cover-plate attached to the half-plane (a caterpillar track).

The boundary conditions of this problem

V=ty=0, sl v'=0, oy=0@), z&ly ty=0,=0 (4.1)
re L,
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are identical with conditions (3.1) where there is no section Lyg. Following (3.2)-(3.5) the
Hilbert problem for a plane with the slots L, and L, can be written as follows:
Im®% () = 0; zeL; Red(s) =+ I[6*Wl(a), z= L, (4.2)
According to (2.2) and (2.4), its solution has the form
D (2) = @ (3) + IGY, () + CYi () -3
Y@ =V@E—a)@—0by), s=1,2
Va Y1 (t) o (2) de qge—gq  Ya(t)o(2)adt w
2R (2) = Yi(2) S t—z oW, S t—z w4
Ly Ly

Determining the arbitrary constants in terms of the given forces P and T, we obtain

TVa L
“mr ' Y= )99
Ly

Y—P)Ve
Cl=%’ Co=

If o (t) = gy = const, the solution is expressed in terms of elementary functions. Evaluating
the tabulated integrals, we obtain from (4.4)
2nR ar
—og Dolz) = '}{Tq(;_) [Yx (be) — Yi(az) + (22— a1 — b)) X
Vb:—ay +Vbe— by ] —
n 2 In
Vor—a + Vb1 421 In X
[V(az—bl)(z—al)+1/(as—a,)(z—b1) z—b,]_
V{be—b1) (z — a1} +V (bs — a1) (z — b1) F—0z

(g —q) 22—a—b
1143'; [1_ 2Y:(z) 3]

If 069=0 then ®,(s)=0,Y=0 and by virtue of (2.5) the solution will separate into
the sum of solutions of two Dirichlet problems. This is in agreement with the fact that
u (z, 0) = H (0) and v (z,0) = H (0), respectively, in the soclutions of the Flamant and Cerruti
problems for forces applied at the point z=0 (in both statics and stationary dynamics)
where H(z) is the Heaviside function. The contact stresses under the stamp and cover-plate
in this case also do not, naturally, experience any interactive influence

oy=—nP @—a)tb -0 zeL,

Ty = 1T (z — ) P (b — 2, zel,

5. The motion of slots in a composite elastic plane. Let Lim = {@km: bxm)» kb =
1,2, yEkm, m=1,...,3 be intervals of the Oz axis of a Cartesian system z0y moving at

a Sub-Rayleigh constant velocity ¢ relative to a composite elastic plane, L, = U:l'lLkm, L,
is the complement I,{J,...,ULs to the Or axis. The line separating the elastic materials

of the plane is superposed on the Oz axis, and magnitudes referred to the half-planes ¥ > 0
and y <0 are denoted by the subscripts j=1 and j= 2. Let the half-planes be com-
pletely adherent in the closed intervals L, = [ay,, by,]; there are slots on the other sections
between them, where the slots are open on L, and wedging stamps are imbedded in them, there
is no friction; the slot edges in Ly adhere to the flexible inextensible cover-planes;
sliding conditions are posed on L4s "anti-sliding” contact of the edges on L;; and stresses
are applied to the slot edges on Lg. We will consider that the boundary point of any interval
Lymym =2,...,5 does not belong tc Lym only when it belongs to L;. The total number of
half-open intervals in Lg ..., Ls is denoted by @' and the open intervals by a”. We write

down the boundary conditions of the problem
lo, (@) = 0° (2), [1y ()] = 7° (2), [u' (2)] = u° (2), (5.1)
@) =1"(@x), z=L,
T = 00 (@), v (@) =v(2), z= L,
oy (@) = 6 (), uy/ (@ =uf(2), z& L,
Tay = 70 (@), W (@) =0 (2), [0, (@) =0°(2), z= L,
o, @ =07, W@D=u () l, @ =1(, ze
Ly
o, (@) =60 (@), Ty (@) =17(2), 2 Ly f (2)] =

fi (@) — f. (2)
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Taking account of the kinematic contact conditions, we additionally give the principal
vector X%, Y* of the stress field at infinity for ¥ »0: we give the displacement jumps
fu (@)l = up® and  Ivlen)l = v° at points 4, that are not boundary point for any intervals
{@ms bim), m =2, ..., 5 we give the normal force Yy applied to the stamp on sach segment
[akss brel  and the jump [v (@)l = Uk, two longitudinal forces Xij applied to the coverplates
are on oy, byl 5 the jump v (ap)l = v,° is on [axgs brd, and the Jump  lu (ags)] = Uy’ is
on [ags, tgs]. The total number of these additional quantities equals 2 (k, + &, + ky) -k 4
ks— a' — 20",

We will seek the soclution in each half-plane in the form (3.2)

ps” = —Relpy (1) + 05295 (22)], pp/ = 5.2)
Im {9595 (25) + @5, (z32)]

oy = 2Re [9;051 (511) + 41292 (222))s Tuyy = 2Im lgppp (20) +
9952 (250)]

ST e —a
qjx = ]/ 1— Cgc]']?, 29’,"; 1 -+ qj22y Zjp =X “]L iqjkyv k,]: 1, 2

where ¢; and ¢; are the longitudinal and transverse wave propagation velocities in the
j-th elastic medium.

We select the functions @k (z) by again pbeing guided by the Hilbert and Riemann con-
ditions (M; is the shear modulus)

2
G (@)= 3 (— 159 (G5, (3) — (— 1)* g5iF, 2) (5.3)
- S SIS SR = S/ SO I SO
gii pizs 3 p}'ls y gy P}x‘ ipjs. y Pi= Vpk'

Rje= gnde—4q/
2 . - =
Pie= P =10 (1 — g Bi', w= i’y pe==pux + pur
Substituting (5.2) into (5.1), we obtain two unrelated combined boundary value problems

for the piecewise-analytic functions Fy(2) ana F,(2).
For the first function this is the Hilbert-Riemann problem (1.1} and (1.2) for

Y (Z) = Fl (Z), Lt = LzULh L* = LsULB9 M= Lh M? = Lg
£ (1) = o p1 00 (2) — pi " 1Ty (2) — hyv (4))

Pa & [P’ (@) + paty’ (2)), 22 L1
1 (@) = — You,p3 "0 () — pi " hyy° (2) — haOy® (2)]

Py h [Pnoy (#) + puo’ (7)), sz LP
G=G (G, GE=h—hy3Vppe
hy=w" Ry (@ndp— g J=1,2
g @) = — (") {p" [mu° () + 2 (hypsy + Popyi) o° (z) ~

ipgt (W (@) 4 2 (Aypys + Papr)v’ (@)}, 2z M

g(z)= 29;% lPucs (@) + puos” (@) + ZiP;% [Pt (2) + Pt (@)1
e M2

Its solution (1.9), {(1.3) and {1.4) has 2k -+ ky -+ ky + ki + ks — o/ — 22" arbitrary
constants,
The boundary value problem for the function Fj(x) has the form

Im ip, () Fot (@)} = fo* (2), 2 & Ly {) Ly, pota) = —1", (5.4)
z e L,
Fray—Frlo=g{@) s=sMy=LULULUL
Fot (&) =Y P 1Prv1” (@) -+ Py’ (®@)] — B7 Papar ™ (%) +
hopyte’ (@)1 £ Plzpszpzd‘fo (x), ze&Ly
fot (@)=— Plpgl [Pagty” (%) + Prgs’ (2)) —
3" [hiD2y01° (@) + hypyy0y” ()] &= p1 ' Pupud® (), TE Ly
g3 {2) = 2Py 'puPu0® (%) + 2ipy  praper® (@)
=@ -’ @ TE=%@—% (=)

We set Fo(2) = @, (3) + P, (2) where D, () is the solution of the problem of a jump
D" (z) — O, (2) = g, (z), 2 My, having the form
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1 g2 (t) dt
Dy (2)= 25 S 2t —z
M,

Then we obtain the Hilbert problem (2.1) for the function @ (z) = @, (z) in which L! = L,,
L? = L, {£ (@) = fot () — Im [p, (2) O, (2)], 2z = L°, s =1, 2. Its solution (2.4) contains Kk, + k3
arbitrary constants. Therefore, the total number of arbitrary constants 2 (ky ks + kg) + &, +
kg — o’ — 2a” equals the number of additicnal parameters of the problem.

The sclution obtained can be used to examine another problem. We introduce the parameters
wi* = Yau gp* = g5, gp™ = ¢;4y*. Then the right sides of the equalities (5.2) retain their
form, on the left side the function u; is replaced by —0y; and v; by Txyi and
conversely *
— 1%y == — Re {9 (351) + ¢5* 05 (2], (3.5)
M *Tayy == Im [, *0p1 (201) -+ Ppa (210))
— u) =2Relg*¢j1 (21) + 20*P 52 (z1)]s
vy =21mlg;*¢ (211) + ¢;*¢s (2]

It hence follows that by an appropriate replacement of all six boundary conditions

= @) = (@), @) =2v@), —o, @ =0 (), (5-6)
(Toy ()] =1° (2), 2z L,

v (1) =0 (a), t(@)=1(), 2&L,;

—ui (t)=u(z), — W@ =0 (), z&L,

etc. and by replacing the quantities Wj, ¢; 9, U, v2°, 6t by  p*, % an®s o 1, u)l, vl
in (5.3) and (5.4), these formulas and the representations (5.5) will determine the solution
of problem (5.6) for a composite plane with new kinds of boundary conditions.

If the plane is homogeneous, then the conditions of total adhesion of the slot edges to
the stamps on arbitrary sections L; can be set together with (5.1). The solution of this
problem will be the sum of solutions of the two problems (3.1) obtained after partitioning of
the conditions u; (z) = uf (2), vy (2) = v (z), * & L, and (5.1) into symmetric and skew-symmetric.

6. Wedging of a composite plane. The solution of the Hilbert-Riemann problem (and
corresponding problems of elasticity theory) for the case of domains L and M! containing semi-

infinite intervals differs slightly from the solution of (1.9) and (1.3). It is merely
necessary to omit those from the quantities (z— &), (2 — bp), (2 =), (z — ;) in which & = — oo, by = oo
or $§= —00  Or g = — 00, =X in the latter and to use the method from Sect.l by classify-

ing the infinitely remote point as a common point of two semi-infinite intervals. Without
studying these modifications separately, we will confine ourselves to examining a problem
whose approximate solution is the content of /3/.

Let us composite plane be weakened by a semi-infinite slit —ox<z<i, y=0,i>0, which
propagates under the action of a finite stamp —b< 2z —ae<0 of constant thickness 2H#, and
a semi~infinite stamp — o< —d of thickness 2H, imbedded therein and moving at a sub-
Rayleigh velocity c¢; there is no contact friction and a transverse force Y is applied to the
first stamp. Since the half-plane materials are different, the crack edges join at a certain
section [0,7). Find the solution in which the juncture at the points z=0 and = —d
is smooth, i.e., the stresses at these points are bounded.

The boundary conditions of the problem have the form (5.1) where o° (@) =1"(x) =~ v° () = +* (2) =
0, zeli=(, o), 1@ =0 @) =0, ze L= (—>, —dUI[=b, —d], 1@ =@ =0"@=0,ze L, = [0, i,
of x) =1 (@) =0,z Ly = (—4a,0) U (—4d, —b), and there are no sections Ly and L,.

Taking the solution in the form of (5.2) and (5.3), we obtain a homogeneous combined
problem F*(z)=6(2)F~ (2, zeM =L, ImF*(z)=0,zeLl'=L, UL, and a Dirichlet problem
Im FgT () = 0, 2 & [—b, —a)].

We write down the canonical solution of the first problem

A @=2@ Dt ay® @t oy — )Mt — )t (6.1)
Z@) = (z— )", _ngarg(z+d)<n, 0<arg(z—1 <2,
t = —a, —b, 1, ¢, ¢y

Converting (1.3), as in /9/, we represent the function Y (2) in the form

v =a )+ e+ ay+ ag) + o)+ 0 @) (6.2)
3
Y(z) \U (¢ Yewi 4 arg(t—e)darg(t—ca)
e D s at 6.9)
k=1

i
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‘P(Z):wy}'(z)s ——v—ymlzuz) y Y@=V e+ e+ (ztae)ziz —0)
i

Lt = (00, —dl, L= [~b, —a], L =10,1]

We consider the behaviour of the function X (z at the nodes. According to a general

rule & =0, 8 = ~Yy, e5=138,=0, 8= —, 8= 0. Since L*=[—b, —al, then
Vi=vy =0, b =Ry=2y= vy= —1/, (6.4)
The function X (s} has root singularities for = —d, —b, —,0 and is bounded for :=1

In view of the absence of points of discontinuity di we obtain m* (3)=0,N, = Ay =90 and by
virtue of (1.6) and (6.4) this means o;=az=0,a=1

Since argZ*(z)=argZ (x) = —Yyn+yIn(l —2) for 2z« 1! then according to (1.5) ©x=8 or
0 = 0y, =0, vy = 1. Now the numbers wy™ = 2 (8 + wr — Ay) can be found according to the formula
w™= —1, w,” = {, wy~ = 1. The desired canonical solution of the problem has the form
iexpfi i
X @) =— i (2) 4 igo(2)] 5

G—c) e~ Vi TGO +d)

where the functions @ (2), Pp (2, Y (3} are expressed by ({6.3).
The integers uw;* and the complex numbers ¢, ¢, are determined, according to (1.4) and
(6.3), by the system of equations (»n=0,1)

[mw} +arg (¢ —cy) +arg(t—e] 7 dt T s
YR +v )T

=0

k=1 L‘};

The general solution of the combined Dirichlet-Riemann boundary value problem has the
form (1.9) and (6.5), where @ () =F (3, () =X (=0, (5)=0, r=4,s=2, Yo (&) =@ — ) Pz (s + a)
(z+ ) (z + D], Q0 (1) = C;z+ Cy. Satisfying the condition of boundedness of the function Fy (2) =
X (9 ®:{8 at once for = —d4,0 and consequently setting P, () =z{z+ d) (D;z+ D), we write
the solution in the form

Fria) = (& — o)™ (& — o) I¥ (3) exp lig (2) + iqg ()]

C C ]
¥ =T et Do) D

where (4, Cy, Dy, D, are real constants.
We have two complex equations ¥ i) =0, k=1,2 to eliminate the poles of the function
Fy {5 at the points z=¢. Finally, solving the homogeneous Dirichlet problem for the
function Fy{z) we obtain /6/
Fa () = i€ (z + o)1 (z + &)™) (6.6)

The coordinates of the boundary points of the contact sections are determined from the
relationships

by 2
S [v" (2, 0)] dz = Hy -~ Hy, S [ (2, 0)] dx = — H;
il -

where according to (5.2), (5.3), and (6.6), we have
WMV p: [V (@] = ¢+ Im Fy* (z) — G- Im P~ (2)

The real constant C in (6.6) is found from the given value of the force Y.
Integrating the jump of the normal stresses in [—b, —a], we obtain C = pupn (2np)™Y.
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CONTACT PROBLEMS OF THE MECHANICS OF BODIES WITH ACCRETION”

N,.KH. ARUTYUNYAN and A.V. MANZHIROV

Contact problems of the mechanics of bodies with accretion are studied.
A general formulation of the mixed problem is given for a viscoelastic
ageing body during its continuous piecewise accretion. Complete systems
of equations of the mixed problem are given in time intervals from the
onset of loading to the onset of accretion, from the onset of accretion
to the end of accretion, and beyond it.

The characteristic feature of the basic relations in the case of a
body with continuous accretion is the use not of the usual equations of
compatibility of the deformations and the Cauchy relations, but of their
analogues in the rates of change of the corresponding quantities /1-3/.
Moreover, the given previous histories of the deformation tensor of the
accruing elements form, at the instant of attachment, specific initial
and boundary conditions /2/ on the accruing surface. In particular, the
total stress tensor associated with external loads and characterizing the
tightness of attachment of the accruing elements is determined at the
accruing surface /2, 3/. The instant of attachment of the new elements
to the main body represents an important characteristic of the process.
The set of instants of attachment completely determines the configquration
of the accruing body at any instant of time. Equations of state of the
theory of creep of the inhomogeneously ageing bodies are used /4, 5/. The
equations reflect the fundamental specific features of the accretion process
where the times of preparation and onset of loading play an important part.

A method of solving the mixed and initial-boundary value problems is
given. Contact problems for a wedge under various methods of accretion
are considered. Integral equations are derived and their solutions
constructed. Numerical solutions of the contact problems for a wedge
with accretion are given for the case when the influx of matter from out-
side results in increasing the wedge angle, and for an accruing quarter-
plane. Qualitative and quantitative effects are discussed, especially
the influence of the method and rate of accretion on the contact character-
istics.

1. Formulation and solution of the mixed problem for an ageing, viscoelastic
body with accretion. Let a homogeneous, viscoelastic ageing body manufactured at the
instant ¢ =0, occupy the region , with surface 8o, and be stress-free up to the instant
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